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Statistical methodology —
Current situation

e Substantial development over last decades

Computer facilities

Assess properties of complex models using simulation studies

Resampling and Bayesian methods now easily available

Wealth of new statistical software packages

Unfortunately, many sensible improvements are ignored in routine
analyses
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Why many researchers
misuse variable selection—
and how to prevent this

Georg Heinze and Daniela Dunkler
for STRATOS Topic Group 2

Medical University of Vienna

CeMSIIS — Section for Clinical Biometrics
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Current practice of variable selection

Variable JAMA Internal European Heart Transplant
Medicine Journal (IF=15.05) International
(IF=14.00) (IF=2.84)
132

A. Original articles 2015 137 89
B. Multivariable models 94 75 49
C. Variable selection 17% 37% 65%
(% of B)
Univariate selection 5% 21% 399%
(% of B)
Stepwise methods 13% 23% 33%
(% of B)
Univariate filtering, then 3% 8% 6%
stepwise selection
(% of B)
Stability evaluation 0 0 0
Median sample size (in B) 4,396 4,319 295

Heinze & Dunkler for TG2, EMR-IBS 5/2017 11
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Current practice of variable selection
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The 5 myths about variable selection

1. The number of variables in a model should be reduced until
there are 10 events per variable.

2. Only variables with proven univariable-model significance should
be included in a multivariable model.

3. Non-significant effects should be eliminated from a model.
4. Selected-model p-values are valid.

5. Variable selection simplifies analysis.

=>» Probably because of these myths univariate selection is so
popular.
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Myth 1: reduce until 10 events per variable

Often a univariate ,filter is applied to reduce the variables that
are included in a multivariable model

But this ,filter’ is using the outcome data - > subject to sampling
error

lgnoring this uncertainty leads to problems

Better: use only pre-existing knowledge to filter variables
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e Easy. (You can do that with any software.)
* Retraceable.

G
|

U

Xl
* Problematic (see also Sun et al, JClinEpi 1996)

; ) a
* The univariate effect of X; onY is a + bc. k Y

__- Consequence

X, falsely not selected (if a = —bc)

0 Pos./Neg. X, falsely selected.

Pos./Neg.
Pos./neg O Pos./neg X, correctly selected (only if b = 0 or ¢ = 0)

=>» Univariate selection works only with uncorrelated variables

Heinze & Dunkler for TG2, EMR-IBS 5/2017 15
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Myth 3: remove non-significant variables

* |tis commonly believed that ,non-significant’ variables must be
removed as they add ,noise’ or even ,bias‘ to the model

* ,In multivariable analysis, only ABC1 and XYZ2 predicted the
outcome.’

* Reverse argument: ,X is not selected = X is not a predictor’
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Background knowledge: simple illustrative simulations

* Should X, be eliminated from the model?

(simulation with N = 50) Ba:
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Background knowledge: simple illustrative simulations

* Should X, be eliminated from the model?
(simulation with N = 50)
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Myth 4: Selected-model based p-values are valid

* After selection, software routinely reports model based p-values
from the finally selected models

* These p-values are grossly misleading (biased low)

* Ignored:
* uncertainty in selection decisions
* multiplicity by performing several decisions step-by-step
* At each step, p-value for §; tests a different hypothesis!

* Better:
* For inference, just use the p-values from the full model

* (you considered all those variables for adjustment!)
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Myth 5: Variable selection simplifies it

Simple model — complex model

But: additional uncertainty is introduced

This additional uncertainty should be quantified (Heinze et al, 2017):
» Selection probabilities of variables
 Selection probabilities of models
* Bias conditional on selection
* RMSD ratios
* Median coefficient, percentile confidence intervals

The bootstrap (Sauerbrei and Schumacher, 1992)
or subsampling (De Bin et al, 2015) can be used for this
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The 5 myths: and what should change

1. The number of variables in a model should be reduced until there are
10 events per variable.
Resp: No, there should be >>10 events per candidate variable.

2. Only variables with proven univariable-model significance should be
included in a multivariable model.
Resp: No, univariable-model significance can be strongly
misleading as criterion for inclusion in a multivariable model.

3. Non-significant effects should be eliminated from a model.
Resp: No, non-significant effects do not harm a model.

4. Selected-model based p-values are valid.
Resp: No, P-values after model selection are almost impossible to
estimate.

5. Variable selection simplifies analysis.
Resp: No, stability investigations are needed and must become
part of routine software output.

Heinze & Dunkler for TG2, EMR-IBS 5/2017 21
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An example

@

Table 4 Body fat study: fll model, model selected by backward elimination with a significance level of 0.157 (AIC selection), and some bootstrap-derived
quantities useful for assessing model uncertainty.

MEDICAL UNIVERSITY
OF VIENNA

Full model Bootstrap Selected model RMSD Relative Bootstrap Bootstrap Bootstrap
; - ; it median st 75
Predictors _ Standard inclusion _ Standard . conditional 25 97.5
Estimate error frequency (%) Estimate error fato bias (%) percentile percentile
(Intercept) 414 23.27 100.0 5.95 8.15 1.06 427 4840 50.40
abdomen 0.20 0.09 100.0 0.87 0.06 1.06 -1.0 0.8 0.69 1.06
wrist -1.84 0.53 47.5 -1.73 048 1.08 -1.5 -1.81 -2.79 -0.61
age 0.07 0.03 84.6 0.06 0.02 1.14 +5.2 0.07 0.00 0.13
height -0.11 0.07 68.4 -0.13 0.05 1.14 +37.4 -0.11 -0.25 0.00
neck -0.40 0.23 62.4 -0.33 022 1.24 +29.8 -0.38 -0.81 0.00
forearm 0.28 0.21 553 0.36 0.19 1.13 +46.4 0.28 0.00 0.64
thigh 0.17 0.15 497 1.14 +G7.0 0.00 0.00 048
chest -0.13 0.11 404 -0.14 0.09 1.14 +66.0 0.00 -0.34 0.00
biceps 0.17 0.17 438 1.15 +100.9 0.00 0.00 0.54
hip -0.15 0.14 40.7 1.09 +86.7 0.00 -043 0.00
ankle 0.18 0.22 342 1.11 +84.2 0.00 -0.37 0.60
weight -0.03 0.15 32.9 1.02 +3833 0.00 -0.36 0.30
knee -0.04 0.24 18.8 0.81 +203.2 0.00 -0.51 043

FMSD, root mean squared difference.

Heinze & Dunkler for TG2, EMR-IBS 5/2017
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An example

Table 4 Body fat study: fll model, model selected by backward elimination with a significance level of 0.157 (AIC selection), and some bootstrap-derived
quantities useful for assessing model un-:emmw /_\

Full model Bmtslrap Selected model RMSD Relative ootstrap Bootsn‘ap Bootstrap S
Predictors ) Stau nclusion Standard atio conditional median 2 5™ 97.5"
Estimate frequency {“u} stimate error bias (%) percentile w

(Intercept) 4.14 2327 II 0 305 8.15 1.06 427 4549 5040
abdomen .90 0.0 100§ 0.87 0.06 1.0G -1.0 (80 0.69 1.06
wrist -1.34 0.53 7.5 -1.73 045 1.08 -15 -1.81 =279 -0.61
age 0.07 0.03 a84.6 0.06 02 14 +52 0.07 0.00 0.13
height -0.11 0.07 G68.4 -0.13 0.05 1.14 +374 -0.11 -0.25 0.00
neck -0.40 023 62 4 -0.33 022 124 +208 -0.38 -0.581 0.00
forearm 028 021 353 0.36 019 1.13 +46.4 028 0.00 0.64
thigh 0.17 0.15 407 1.1 +37.0 0.00 0.00 048
chest -0.13 011 404 -0.14 0.00 14 +36.0 0.00 -0.34 0.00
biceps 0.17 017 438 1.15 +100.9 0.00 0.00 0.54
hip : : 0.00 043 0.00
anikle Dear software developers, please implement this: 0.00 037 0.60
weight . . 0.00 -0.36 0.30
knee This will help to make researchers alert to the 0.00 051 043
problems of variable selection.
I Yours, Georg and Daniela

Johnson, 1996

Heinze & Dunkler for TG2, EMR-IBS 5/2017 23
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