

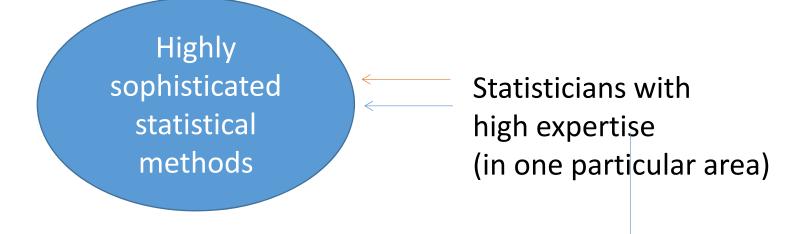
General aims of the

Georg Heinze¹ and Willi Sauerbrei² for the STRATOS initiative

¹CeMSIIS-Section for Clinical Biometrics, Medical University of Vienna, Austria

²Institute for Medical Biometry and Medical Informatics, Medical Center - University of Freiburg, Germany

Statistical methodology – Current situation


- Substantial development over last decades
- Computer facilities
- Assess properties of complex models using simulation studies
- Resampling and Bayesian methods now easily available
- Wealth of new statistical software packages

Unfortunately, many sensible improvements are ignored in routine analyses

Why are our improvements ignored?

Analysts with good statistical education

Data analysts with little statistical training

Why are our improvements ignored?

Highly sophisticated statistical methods, methods

Statisticians with high expertise (in one particular area)

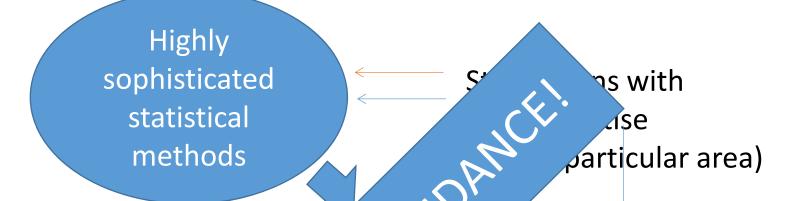
Analysts with good statistical education

Data analysts with little statistical training

improvements ignored?

Highly sophisticated statistical methods, methods, methods, ...

Statisticians with high expertise (in one particular area)


Analysts with good statistical education

Data analysts with little statistical training

Why are our improvements ignored?

Analysts with good cation

Data analysts with little statistical training

STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative

Willi Sauerbrei,^{a*†} Michal Abrahamowicz,^b Douglas G. Altman,^c Saskia le Cessie,^d and[‡] James Carpenter^e on behalf of the STRATOS initiative

Statistics in Medicine 2014

2011	ISCB Ottawa, Epidemiology Sub-Comm.	Preliminary ideas
2012	ISCB Bergen	Discussions, SG
2013	ISCB Munich	Initiative launched
2014-16	ISCB	Invited Sessions
2016	Banff	Workshop
2016	IBC Victoria	Invited Session
2016	HEC Munich	Invited Session
2017	IBS-EMR Thessaloniki	Invited Session
2017	CEN-ISBS Vienna	Invited Session

http://www.stratos-initiative.org/

Basic information

c		Topic Group	Chairs and further members				
]			Chairs:	James Carpenter, Kate Lee			
	1	Missing data	Members:	Melanie Bell, Els Goetghebeur, Joe Hogan, Rod Little, Andrea Rotnitzky, Kate Tilling, Ian White			
		Selection of variables	Chairs:	Michal Abrahamowicz, Aris Perperoglou, Willi Sauerbrei			
	2	and functional forms in multivariable analysis	Members:	Heiko Becher, Harald Binder, Frank Harrell, Georg Heinze, Patrick Royston, Matthias Schmid			
	3	Initial data analysis	Chairs:	Marianne Huebner, Saskia le Cessie, Werner Vach			
	3	Initial data analysis	Members:	Maria Blettner, Dianne Cook, Heike Hofmann, Hermann-Josef Huss, Lara Lusa			
		Measurement error and	Chairs:	Laurence Freedman, Victor Kipnis			
	4	misclassification	Members:	Raymond Carroll, Veronika Deffner, Kevin Dodd, Paul Gustafson, Ruth Keogh, Helmut Küchenhoff, Pamela Shaw, Janet Tooze			
			Chairs:	Mitchell Gail			
	5	Study design	Members:	Doug Altman, Gary Collins, Luc Duchateau, Neil Pearce, Peggy Sekula, Elizabeth Williamson, Mark Woodward			
		Evaluating diagnostic	Chairs:	Gary Collins, Carl Moons, Ewout Steyerberg			
	6	tests and prediction models	Members:	Patrick Bossuyt, Petra Macaskill, Ben van Calster, Andrew Vickers			
			Chairs:	Els Goetghebeur			
	7	Causal inference	Members:	Bianca De Stavola, Saskia le Cessie, Niels Keiding, Erica Moodie, Ingeborg Waernbaum, Michael Wallace			
	8	Survival analysis	Chairs:	Michal Abrahamowicz, Per Kragh Andersen, Terry Therneau			
	O	Survival analysis	Members:	Richard Cook, Pierre Joly, Torben Martinussen, Maja Pohar-Perme, Jeremy Taylor			
			Chairs:	Lisa McShane, Joerg Rahnenfuehrer			
	9	High-dimensional data	Members:	Axel Benner, Harald Binder, Anne-Laure Boulesteix, Tomasz Burzykowski, W. Evan Johnson,			

Cross-cutting panels

	Panels	Chairs
1	Glossary (GP)	Simon Day, Marianne Huebner, Jim Slattery
2	Data Sets (DP)	Saskia Le Cessie, Aris Perperoglou, Hermann Huss
3	Publications (PP)	Stephen Walter
3	rublications (FF)	Co- Chairs: Bianca De Stavola, Mitchell Gail, Petra Macaskill
4	New Membership (MP)	James Carpenter, Willi Sauerbrei
5	Website (WP)	Joerg Rahnenfuehrer, Willi Sauerbrei
6	Literature Review (RP)	Gary Collins, Carl Moons
7	Simulation Studies (SP)	Michal Abrahamowicz, Harald Binder
8	Contact with Other Societies and Organizations (OP)	Willi Sauerbrei
9	Knowledge Transfer (TP)	Suzanne Cadarette

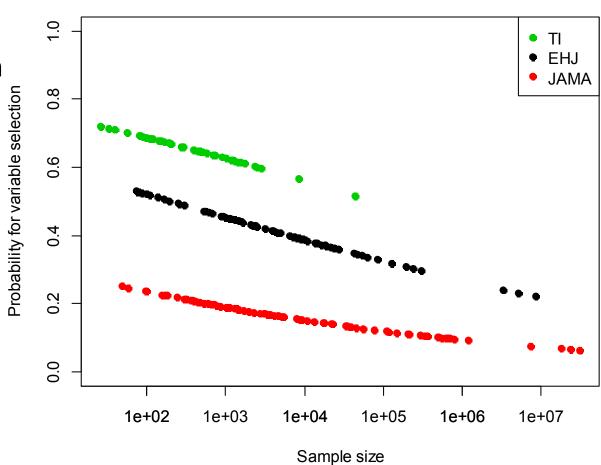
Why many researchers misuse variable selection—and how to prevent this

Georg Heinze and Daniela Dunkler for STRATOS Topic Group 2

Medical University of Vienna

CeMSIIS – Section for Clinical Biometrics

Current practice of variable selection


Variable	JAMA Internal Medicine (IF=14.00)	European Heart Journal (IF=15.05)	Transplant International (IF=2.84)
A. Original articles 2015	137	132	89
B. Multivariable models	94	75	49
C. Variable selection (% of B)	17%	37%	65%
Univariate selection (% of B)	5%	21%	39%
Stepwise methods (% of B)	13%	23%	33%
Univariate filtering, then stepwise selection (% of B)	3%	8%	6%
Stability evaluation	0	0	0
Median sample size (in B)	4,396	4,319	295

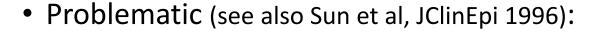
Current practice of variable selection

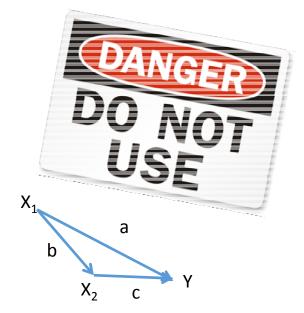
 Modeling the probability for variable selection by journal and sample size:

The 5 myths about variable selection

- 1. The number of variables in a model should be reduced until there are 10 events per variable.
- 2. Only variables with proven univariable-model significance should be included in a multivariable model.
- 3. Non-significant effects should be eliminated from a model.
- 4. Selected-model p-values are valid.
- 5. Variable selection simplifies analysis.
- → Probably because of these myths univariate selection is so popular.

Myth 1: reduce until 10 events per variable


- Often a univariate ,filter' is applied to reduce the variables that are included in a multivariable model
- But this ,filter' is using the outcome data > subject to sampling error
- Ignoring this uncertainty leads to problems
- Better: use only pre-existing knowledge to filter variables



Myth 2: include only univariately significant variables

- Easy. (You can do that with any software.)
- Retraceable.

a	b	С	Consequence
Pos.	Pos.	Neg.	X_1 falsely not selected (if $a = -bc$)
0	Pos./Neg.	Pos./Neg.	X_1 falsely selected.
Pos./neg	0	Pos./neg	X_1 correctly selected (only if $b=0$ or $c=0$).

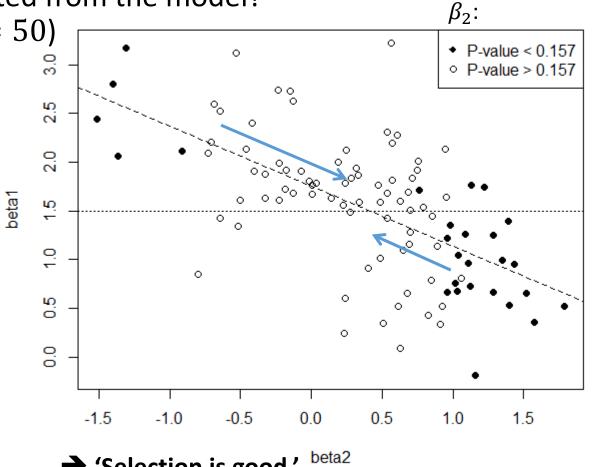
→ Univariate selection works only with uncorrelated variables.

Myth 3: remove non-significant variables

- It is commonly believed that ,non-significant' variables must be removed as they add ,noise' or even ,bias' to the model
- In multivariable analysis, only ABC1 and XYZ2 predicted the outcome.
- Reverse argument: ,X is not selected = X is not a predictor'

Background knowledge: simple illustrative simulations

• Should X₂ be eliminated from the model?


(simulation with N = 50)

True
$$\beta_1 = 1.5$$
, $\beta_2 = 0.3$

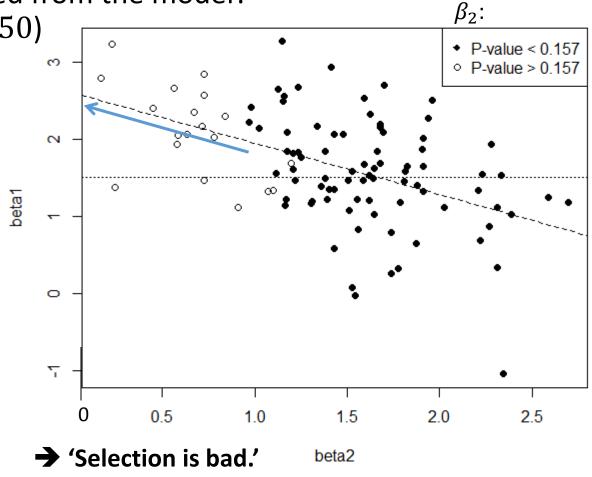
A weak β_2 :

Setting it to 0 will more often push $\hat{\beta}_1$ towards its true value than away from it.

 \rightarrow Shrinkage effect on $\hat{\beta}_1$!

→ 'Selection is good.'

Background knowledge: simple illustrative simulations


• Should X₂ be eliminated from the model?

(simulation with N = 50)

True
$$\beta_1 = 1.5$$
, $\beta_2 = 1.5$

A strong β_2 :

Setting it to 0 will always push $\hat{\beta}_1$ away from its true value.

Myth 4: Selected-model based p-values are valid

- After selection, software routinely reports model based p-values from the finally selected models
- These p-values are grossly misleading (biased low)
- Ignored:
 - uncertainty in selection decisions
 - multiplicity by performing several decisions step-by-step
 - At each step, p-value for β_i tests a different hypothesis!
- Better:
 - For inference, just use the p-values from the full model
 - (you considered all those variables for adjustment!)

Myth 5: Variable selection simplifies it

- Simple model complex model
- But: additional uncertainty is introduced
- This additional uncertainty should be quantified (Heinze et al, 2017):
 - Selection probabilities of variables
 - Selection probabilities of models
 - Bias conditional on selection
 - RMSD ratios
 - Median coefficient, percentile confidence intervals
- The bootstrap (Sauerbrei and Schumacher, 1992) or subsampling (De Bin et al, 2015) can be used for this

The 5 myths: and what should change

1. The number of variables in a model should be reduced until there are 10 events per variable.

Resp: No, there should be >>10 events per candidate variable.

2. Only variables with proven univariable-model significance should be included in a multivariable model.

Resp: No, univariable-model significance can be strongly misleading as criterion for inclusion in a multivariable model.

3. Non-significant effects should be eliminated from a model.

Resp: No, non-significant effects do not harm a model.

4. Selected-model based p-values are valid.

Resp: No, P-values after model selection are almost impossible to estimate.

5. Variable selection simplifies analysis.

Resp: No, stability investigations are needed and must become part of routine software output.

An example

Table 4 Body fat study: full model, model selected by backward elimination with a significance level of 0.157 (AIC selection), and some bootstrap-derived quantities useful for assessing model uncertainty.

	Full model		Bootstrap	Selected model		DMCD	Relative	Bootstrap	Bootstrap	Bootstrap
Predictors	Estimate	Standard error	inclusion frequency (%)	Estimate	Standard error	RMSD ratio	conditional bias (%)	median	2.5 th percentile	97.5 th percentile
(Intercept)	4.14	23.27	100.0	5.95	8.15	1.06		4.27	-48.49	50.40
abdomen	0.90	0.09	100.0	0.87	0.06	1.06	-1.0	0.89	0.69	1.06
wrist	-1.84	0.53	97.5	-1.73	0.48	1.08	-1.5	-1.81	-2.79	-0.61
age	0.07	0.03	84.6	0.06	0.02	1.14	+5.2	0.07	0.00	0.13
height	-0.11	0.07	68.4	-0.13	0.05	1.14	+37.4	-0.11	-0.25	0.00
neck	-0.40	0.23	62.4	-0.33	0.22	1.24	+29.8	-0.38	-0.81	0.00
forearm	0.28	0.21	55.3	0.36	0.19	1.13	+46.4	0.28	0.00	0.64
thigh	0.17	0.15	49.7			1.14	+67.0	0.00	0.00	0.48
chest	-0.13	0.11	49.4	-0.14	0.09	1.14	+66.0	0.00	-0.34	0.00
biceps	0.17	0.17	43.8			1.15	+100.9	0.00	0.00	0.54
hip	-0.15	0.14	40.7			1.09	+86.7	0.00	-0.43	0.00
ankle	0.18	0.22	34.2			1.11	+84.2	0.00	-0.37	0.60
weight	-0.03	0.15	32.9			1.02	+383.3	0.00	-0.36	0.30
knee	-0.04	0.24	18.8			0.81	+203.2	0.00	-0.51	0.43

RMSD, root mean squared difference.

Johnson, 1996

An example

Table 4 Body fat study: full model, model selected by backward elimination with a significance level of 0.157 (AIC selection), and some bootstrap-derived

a	uantities	useful	for	assessing	model	uncertainty.

Predictors	Full n	(Bootstrap inclusion	Selected	(RMSD	Relative conditional	Bootstrap median	Bootstrap 2.5 th	Bootstrap 97.5 th
11001010	Estimate	Standard error	frequency (%)	Estimate	Standard error	ratio	bias (%)		percentile	percentile
(Intercept)	4.14	23.27	100,0	5.95	8.15	1.06		4.27	-48.49	50.40
abdomen	0.90	0.09	100.0	0.87	0.06	1.06	-1.0	0,89	0.69	1.06
wrist	-1.84	0.53	97.5	-1.73	0.48	1.08	-1.5	-1.81	-2.79	-0.61
age	0.07	0.03	84.6	0.06	0,02	1.14	+5.2	0.07	0.00	0.13
height	-0.11	0.07	68.4	-0.13	0.05	1.14	+37.4	-0.11	-0.25	0.00
neck	-0.40	0.23	62.4	-0.33	0.22	1.24	+29.8	-0.38	-0.81	0.00
forearm	0.28	0.21	55.3	0.36	0.19	1.13	+46.4	0.28	0.00	0.64
thigh	0.17	0.15	49.7			1.14	+67.0	0.00	0.00	0.48
chest	-0.13	0.11	49.4	-0.14	0.09	1.14	+66.0	0.00	-0.34	0.00
biceps	0.17	0.17	43.8	\ /		1.15	+100.9	0.00	0.00	0.54
hip		C 1			•		.1.	0.00	-0.43	0.00
ankle	Dear	' Sottwa	are develoj	pers, pl	ease impl	ement	this:	0.00	-0.37	0.60
weight								0.00	-0.36	0.30
knee	INIS	will nei	p to make	resear	cners ale	r't to ti	ne	0.00	-0.51	0.43
	nroh	lems of	variable s	election	n					
	•				1.					
	Your	s Geor	a and Dani	ea						

RMSD, root me

Johnson, 1996

References

- Full tutorial 'Variable selection for statistical models: a review and recommendations for the practicing statistician' with additional references: http://tinyurl.com/variable-selection-talk
- Heinze G, Wallisch C, Dunkler D. Variable selection a review and recommendations for the practicing statistician. Biometrical Journal, invited review, submitted.
- Heinze G, Dunkler D. Five myths about variable selection. *Transplant International* 2017;30:6-10.
- De Bin R, Janitza S, Sauerbrei W, Boulesteix A. Subsampling versus bootstrapping in resampling-based model selection for multivariable regression. Biometrics 2016;72:272-80
- Johnson RW. Fitting percentage of body fat to simple body measurements. Journal of Statistics Education 1996; 4. http://www.amstat.org/publications/jse/v4n1/datasets.johnson.html
- Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: Application to the Cox regression model. *Statistics in Medicine* 1992; **11**: 2093-2109
- Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. *Journal of Clinical Epidemiology* 1996; **49**: 907-916.

