The STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative

on recent progress of the topic groups and panels

Willi Sauerbrei¹

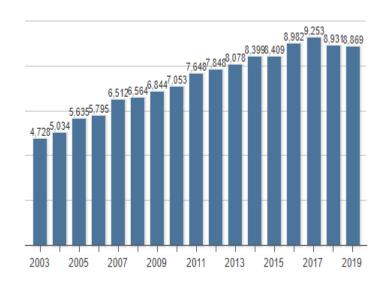
Michal Abrahamowicz², Marianne Hübner³, Ruth Keogh⁴

for the STRATOS Initiative

Medical Center – University of Freiburg, Germany http://stratos-initiative.org/

¹ Medical Center – University of Freiburg ,Germany ² McGill University Montreal , Canada ³ Michigan State University, USA ⁴ London School of Hygiene and Tropical Medicine, UK

Overview

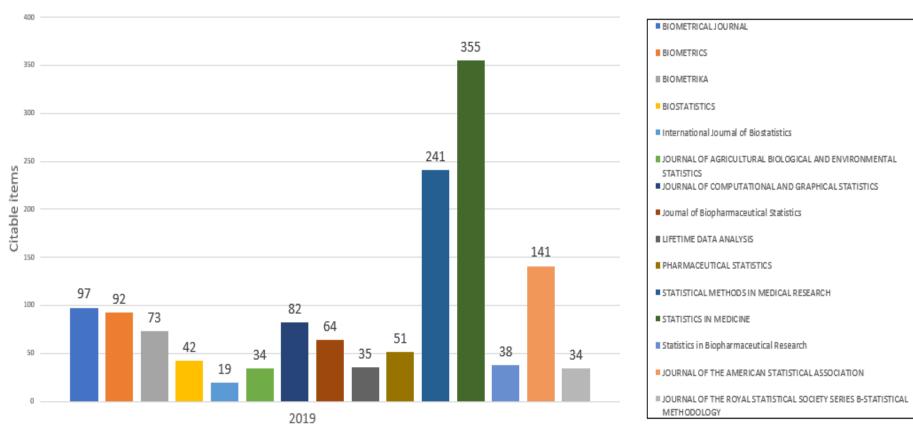

- The STRATOS initiative Why and for whom?
- History and collaborations
- Recent progress and ideas for the future

The STRATOS initiative – Why? Current situation in statistical methodology

- Statistical methodology has seen substantial development
- Computing capabilities can be viewed as the cornerstone
- Possible to assess properties and compare complex model building strategies using simulation studies
- Resampling and Bayesian methods allow investigations that were impossible two decades ago
- Wealth of new statistical software packages allows a rapid implementation and verification of new statistical ideas

Statistical research...

Number of articles per year in 124, Statistics & Probability' journals



https://jcr.clarivate.com/

 Now, every year more than 8,000 new articles full of novel methodology are published...

... biostatistical research ...

Restricting to ,bio*', ,medic*', ,pharma*', ,life*' journals: **1,241** articles in 2019, in addition: JASA, JRSS B

https://jcr.clarivate.com/

Current situation in practical analyses

Unfortunately, many sensible improvements are ignored

Reasons why improved strategies are ignored

- Overwhelming concern with theoretical aspects.
 Theoretical results are only available under strong assumptions which do not hold in practice
- Very limited guidance on key issues that are vital in practice, discourages analysts from utilizing more sophisticated and possibly more appropriate methods in their analyses.

Statistical methodology – problems are well known

The severity of problems is even discussed in the public press:

The Economist 'Unreliable research: Trouble at the lab.' (October 2013):

"Scientists' grasp of statistics has not kept pace with the development of complex mathematical techniques for crunching data. Some scientists use inappropriate techniques because those are the ones they feel comfortable with; others latch on to new ones without understanding their subtleties. Some just rely on the methods built into their software, even if they don't understand them."

The Lancet Research: Increasing Value, Reducing Waste Series

Comment (Introduction)

How should medical science change?

In 2009, we published a Viewpoint by Iain Chalmers and Paul Glasziou called "Avoidable waste in the production and reporting of research evidence", which made the extraordinary claim that as much as 85% of research investment was wasted.

Kleinert and Horton, 2014

"Although this vast enterprise has led to substantial health improvements, many more gains are possible if the waste and inefficiency in the ways that biomedical research is chosen, designed, done, analysed, regulated, managed, disseminated, and reported can be addressed."

Macleod et al., 2014

Better use of statistical methods

- At least two tasks are essential:
 - 1. **Experts** in specific methodological areas have to work towards developing guidance
 - 2. An ever-increasing need for **continuing education** at all stages of the career
- For busy applied researchers it is often difficult to follow methodological progress even in their principal application area
 - Reasons are diverse
 - Consequence is that analyses are often deficient
- Knowledge gained through research on statistical methodology needs to be transferred to the broader community
- Many analysts would appreciate an overview on the current state of the art and for practical guidance

Aims of the initiative

- Provide evidence supported guidance for highly relevant issues in the design and analysis of observational studies
- As the statistical knowledge of the analyst varies substantially, guidance has to keep this background in mind. Guidance has to be provided at several levels
- For the **start** we will concentrate on **state-of-the-art** guidance based on substantial evidence
- Help to identify questions requiring much more primary research

The overarching long-term aim is to improve key parts of design and statistical analyses of observational studies in practice

Different levels of statistical knowledge

Level 1: Low statistical knowledge

Most analyses are done by analysts at this level

Level 2: Experienced statistician

 Methodology perhaps slightly below state of the art, but doable by every experienced analyst

Level 3: Expert in a specific area

• To improve statistical models and to adapt them to complex real problems, researchers develop new and more complex approaches. Advantages and usefulness in practice need to be assessed

Guidance for analysis is needed for many stakeholders (analysts with different levels of knowledge, teachers, reviewers, journalists,)

Researchers

First in a Series of Papers for the Biometric Bulletin

STRATOS initiative – Guidance for designing and analyzing observational studies

Willi Sauerbrei¹, Marianne Huebner², Gary S. Collins³, Katherine Lee⁴, Laurence Freedman⁵, Mitchell Gail⁶, Els Goetghebeur⁷, Joerg Rahnenfuehrer⁸ and Michal Abrahamowicz⁹ on behalf of the STRATOS initiative.

Short papers from all TGs and some panels

Consumers

Guidance for designing and analysing observational studies:

The STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative

Willi Sauerbrei¹, Gary S. Collins², Marianne Huebner³, Stephen D. Walter⁴, Suzanne M. Cadarette⁵, and Michal Abrahamowicz⁶ on behalf of the STRATOS initiative

Volume 26 Number 3 | Medical Writing September 2017 | 17

Journal of the European Medical Writers Association (EMWA)

STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative

Willi Sauerbrei, a*† Michal Abrahamowicz, b Douglas G. Altman, Saskia le Cessie, and James Carpenter on behalf of the STRATOS initiative

Statistics in Medicine 2014

http://www.stratos-initiative.org/

2011	ISCB Ottawa, Epidemiology Sub-Comm.	Preliminary ideas
2012	ISCB Bergen	Discussions, SG
2013	ISCB Munich	Initiative launched
2014-16	ISCB	Invited Sessions
2016	BIRS, Banff, Canada	First general meeting
2016	IBC Victoria	Invited Session
2016	HEC Munich	Invited Session
2017	IBS-EMR Thessaloniki	Invited Session
2017	ISCB Vigo	Scientific topic
2017	CEN-ISBS Vienna	Invited Session
2017	GMDS Oldenburg	Invited Session
2018	018 ISCB, RSS,	
2019	BIRS, Banff, Canada, ISCB, Second general meeti	
2020	ISCB, IBC,	

Topic groups

Topic Group		Chairs
1	Missing data	James Carpenter, Kate Lee
2	Selection of variables and functional forms in multivariable analysis	Georg Heinze, Aris Perperoglou, Willi Sauerbrei
3	Initial data analysis	Marianne Huebner, Saskia le Cessie, Carsten Oliver Schmidt
4	Measurement error and misclassification	Laurence Freedman, Victor Kipnis
5	Study design	Mitchell Gail, Suzanne Cadarette
6	Evaluating diagnostic tests and prediction models	Ewout Steyerberg, Ben van Calster
7	Causal inference	Els Goetghebeur, Ingeborg Waernbaum
8	Survival analysis	Michal Abrahamowicz, Per Kragh Andersen, Terry Therneau
9	High-dimensional data	Lisa McShane, Joerg Rahnenfuehrer German Region 2021

Cross-cutting panels

Panel		Chairs and Co-Chairs		
MP	Membership	Chairs:	James Carpenter, Willi Sauerbrei	
PP	Publications	Chairs:	Bianca De Stavola, Pam Shaw	
		Co-Chairs:	Mitchell Gail, Petra Macaskill	
GP	Glossary	Chairs:	Martin Boeker, Marianne Huebner,	
WP	Website	Chairs:	Joerg Rahnenfuehrer, Willi Sauerbrei	
RP	Literature Review	Chairs:	Gary Collins, Carl Moons	
ВР	Bibliography	Chairs:	to be determined	
SP	Simulation Studies	Chairs:	Michal Abrahamowicz, Anne-Laure Boulesteix	
DP	Data Sets	Chairs:	Saskia Le Cessie, Maarten van Smeden	
TP	Knowledge Translation	Chair:	Rolf Groenwold, Maarten van Smeden	
СР	Contact Organisations	Chairs:	Willi Sauerbrei	
VP	Visualisation	Chairs:	Mark Baillie	

TG 2: Selection of variables and functional forms in multivariable analysis

Sauerbrei et al. Diagnostic and Prognostic Research https://doi.org/10.1186/s41512-020-00074-3

(2020) 4:3

State of the art in selection of variables and functional forms in multivariable

analysis—outstanding issues

Willi Sauerbrei^{1*}, Aris Perperoglou², Matthias Schmid³, Michal Abrahamowicz⁴, Heiko Becher⁵, Harald Binder¹, Daniela Dunkler⁶, Frank E. Harrell Jr⁷, Patrick Royston⁸, Georg Heinze⁶ and for TG2 of the STRATOS initiative

Table 1 Relevant issues in deriving evidence-supported state of the art guidance for multivariable modelling

No. Item 1 Investigation and comparison of the properties of variable selection strategies

- 2 Comparison of spline procedures in both univariable and multivariable contexts
- 3 How to model one or more variables with a 'spike-at-zero'?
- 4 Comparison of multivariable procedures for model and function selection
- 5 Role of shrinkage to correct for bias introduced by data-dependent modelling
- 6 Evaluation of new approaches for post-selection inference
- 7 Adaption of procedures for very large sample sizes needed?

Perperoglou et al. BMC Medical Research Methodology https://doi.org/10.1186/s12874-019-0666-3 (2019) 19:46

A review of spline function procedures in R

Aris Perperoglou^{1*} , Willi Sauerbrei², Michal Abrahamowicz³, Matthias Schmid⁴ on behalf of TG2 of the STRATOS initiative

See also "Educational work"

TG 4: Measurement error and misclassification

Annals of Epidemiology

Volume 28, Issue 11, November 2018, Pages 821-828

Epidemiologic analyses with error-prone exposures: review of current practice and recommendations

Pamela A. Shaw, PhD a, *, Veronika Deffner, PhD b, Ruth H. Keogh. DPhil c. Janet A. Tooze, PhD d, Kevin W. Dodd, PhD e, Helmut Küchenhoff, PhD b, Victor Kipnis, PhD ^e, Laurence S. Freedman, PhD ^{f, g}, on behalf of Measurement Error and Misclassification Topic Group (TG4) of the STRATOS Initiative

TUTORIAL IN BIOSTATISTICS

STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1—Basic theory and simple methods of adjustment

Ruth H. Keogh¹ | Pamela A. Shaw² | Paul Gustafson³ | Victor Kipnis¹¹ | Laurence S. Freedman^{12,13}

Statistics in Medicine (2020).

See also "Educational work"

TUTORIAL IN BIOSTATISTICS

STRATOS guidance document on measurement error and Raymond J. Carroll^{4,5} | Veronika Deffner⁶ | Kevin W. Dodd⁷ | misclassification of variables in observational epidemiology: Helmut Küchenhoff⁸ | Janet A. Tooze⁹ | Michael P. Wallace¹⁰ Part 2-More complex methods of adjustment and advanced topics

```
Pamela A. Shaw<sup>1</sup> Deal Gustafson<sup>2</sup> Raymond J. Carroll<sup>3,4</sup>
Veronika Deffner<sup>5</sup> | Kevin W. Dodd<sup>6</sup> | Ruth H. Keogh<sup>7</sup> □ | Victor Kipnis<sup>6</sup> |
Janet A. Tooze<sup>8</sup> | Michael P. Wallace<sup>9</sup> | Helmut Küchenhoff<sup>5</sup> |
Laurence S. Freedman 10,11 (1)
Statistics in Medicine (2020).
```

TG 1: Missing data

Journal of Clinical Epidemiology
Available online 2 February 2021

In Press, Journal Pre-proof (?)

Framework for the Treatment And

Reporting of Missing data in Observational

Studies: The TARMOS framework

Lee KJ ^{1, 2} $\stackrel{\boxtimes}{\sim}$ Tilling K ³, Cornish RP ³, Little RJA ⁴, Bell ML ⁵, Goetghebeur E ⁶, Hogan JW ⁷,

Carpenter JR 8, the STRATOS initiative

TG 3: Initial data analysis

Huebner et al. BMC Medical Research Methodology https://doi.org/10.1186/s12874-020-00942-y (2020) 20:61

Hidden analyses: a review of reporting practice and recommendations for more transparent reporting of initial data analyses

Marianne Huebner^{1,2*}, Werner Vach³, Saskia le Cessie⁴, Carsten Oliver Schmidt⁵, Lara Lusa^{6,7} and on behalf of the Topic Group "Initial Data Analysis" of the STRATOS Initiative (STRengthening Analytical Thinking for Observational Studies, http://www.stratos-initiative.org)

Observational Studies 4 (2018) 171-192

A Contemporary Conceptual Framework for Initial Data Analysis

Marianne Huebner

Department of Statistics and Probability Michigan State University East Lansing, MI 48824, USA

Saskia le Cessie

S.le Cessie@lumc.nl

huebner@stt.msu.edu

Department of Clinical Epidemiology and Department of Medical Statistics and Bioinformatics Leiden University Medical Center

Leiden, The Netherlands

Carsten O. Schmidt

Carsten.schmidt@uni-greifswald.de

Institute for Community Medicine, SHIP-KEF University Medicine of Greifswald Greifswald, Germany

Werner Vach

Werner.vach@usb.ch

Department of Orthopaedics and Traumatology University Hospital Basel Basel, Switzerland

on behalf of the Topic Group "Initial Data Analysis" of the STRATOS Initiative (STRengthening Analytical Thinking for Observational Studies, http://www.stratos-initiative.org). Membership of the Topic Group is provided in the Acknowledgments.

TG 5: Study design

Gail MH, et al. BMJ Open 2019;9:e031031. doi:10.1136/bmjopen-2019-031031

Design choices for observational studies of the effect of exposure on disease incidence

Mitchell H Gail ¹ Douglas G Altman, ² Suzanne M Cadarette, ³ Gary Collins, ⁴ Stephen JW Evans, ⁵ Peggy Sekula ¹ , ⁶ Elizabeth Williamson, ⁷ Mark Woodward ⁸

TG 6: Evaluating diagnostic tests and prediction models

Wynants et al. BMC Medicine (2019) 17:192 https://doi.org/10.1186/s12916-019-1425-3

Three myths about risk thresholds for prediction models

Laure Wynants^{1,2*}, Maarten van Smeden^{3,4}, David J. McLernon⁵, Dirk Timmerman^{1,6}, Ewout W. Steyerberg⁴, Ben Van Calster^{1,4} and on behalf of the Topic Group 'Evaluating diagnostic tests and prediction models' of the STRATOS initiative

Van Calster et al. BMC Medicine (2019) 17:230 https://doi.org/10.1186/s12916-019-1466-7

Calibration: the Achilles heel of predictive analytics

Ben Van Calster^{1,26*}, David J. McLernon^{3,6}, Maarten van Smeden^{2,6}, Laure Wynants^{1,5}, Ewout W. Steyerberg^{2,6}
On behalf of Topic Group 'Evaluating diagnostic tests and prediction models' of the STRATOS initiative⁶

Gynecologic Oncology Reports 18 (2016) 49-50

Correspondence

Flawed external validation study of the ADNEX model to diagnose ovarian canceron behalf of TG6 of the STRATOS initiative

TG 7: Causal inference

TUTORIAL IN BIOSTATISTICS

Formulating causal questions and principled statistical answers

```
Els Goetghebeur<sup>1,2</sup> | Saskia le Cessie<sup>3</sup> | Bianca De Stavola<sup>4</sup> |

Erica EM Moodie<sup>5</sup> | Ingeborg Waernbaum<sup>6</sup> | "on behalf of" the topic group Causal

Inference (TG7) of the STRATOS initiative

Statistics in Medicine (2020).
```

TG 8: Survival analysis

TUTORIAL IN BIOSTATISTICS

Analysis of time-to-event for observational studies: Guidance to the use of intensity models

```
Per Kragh Andersen<sup>1</sup> | Maja Pohar Perme*<sup>2</sup> | Hans C. van Houwelingen<sup>3</sup> | Richard J. Cook<sup>4</sup> | Pierre Joly<sup>5</sup> | Torben Martinussen<sup>1</sup> | Jeremy M.G. Taylor<sup>6</sup> | Michal Abrahamowicz<sup>7</sup> | Terry M. Therneau<sup>8</sup> | for the STRATOS TG8 topic group

Statistics in Medicine (2020).
```

TG 9: High-dimensional data

Talk from Lisa McShane

Biometrical Bulletin since 3/2017 articles from all TGs and from some panels

STRengthening
Analytical Thinking for
Observational Studies
(STRATOS)

Introducing the Visualisation Panel (SP)

Marc Baillie (I) and Marc Vandemeulebroecke (I); on behalf of the Visualisation Panel (I) Biostatistical Sciences and Pharmacometrics, Novartis Pharma AG. Basel. Switzerland

Glossary Panel (GP) - Defining common meaning for statistical terms

Martin Boeker (I) Patrick Tippmann (I), Simon Day (2), Marianne Huebner (3), Willi Sauerbrei (I)

- (I)Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center University of Freiburg, Germany
- (2) Clinical Trials Consulting & Training Limited, North Marston, UK
- (3) Department of Statistics and Probability, Michigan State University, EastLansing, MI, USA

Simulation panel Comparison of statistical methods: How? Simulation studies play a key role

LETTER TO THE EDITOR

Biometrical Journal

On the necessity and design of studies comparing statistical methods

Anne-Laure Boulesteix¹

Harald Binder²

Michal Abrahamowicz³

Willi Sauerbrei²

for the Simulation Panel of the STRATOS Initiative

See also "Educational work"

Talk from Tim Morris

Collaboration partner in SISAQOL

'SISAQOL-IMI: Generating recommendations for the design, analysis and interpretation of Patient Reported Outcomes (PROs) for cancer clinical trials

- International multidisciplinary consortium, co-led by the European Organisation for Research and Treatment of Cancer (EORTC) and Boehringer Ingelheim (BI),
- A public-private collaborative research project. Forty one stakeholder groups are involved, including pharmaceutical industry, academia, cancer institutes, regulators, and patient advocacy organisations.'

On behalf of STRATOS Saskia le Cessie and Els Goetghebeur lead WP3-Feasibility of developing recommendations for non-RCTs, with single-arm studies as a case study.

Issues from (nearly) all TGs will play a role.

Educational work

PLOS ONE | https://doi.org/10.1371/journal.pone.0241427 December 21, 2020

REGISTERED REPORT PROTOCOL

Systematic review of education and practical guidance on regression modeling for medical researchers who lack a strong statistical background: Study protocol

Paul Bach^{1,2,3}, Christine Wallisch^{1,2,4}, Nadja Klein³, Lorena Hafermann^{1,2}, Willi Sauerbrei⁵, Ewout W. Steyerberg⁶, Georg Heinze⁴, Geraldine Rauch ^{1,2}, for topic group 2 of the STRATOS initiative¹

Introduction to statistical simulations in health research

Anne-Laure Boulesteix , ¹ Rolf HH Groenwold, ^{2,3} Michal Abrahamowicz, ⁴ Harald Binder, ⁵ Matthias Briel, ^{6,7} Roman Hornung, ¹ Tim P Morris , ⁸ Jörg Rahnenführer, ⁹ Willi Sauerbrei, ⁵ for the STRATOS Simulation Panel

SIGNIFICANCE | February 2020

Analysis in an imperfect world

When we observe the world, we sometimes make mistakes. **Michael Wallace**, on behalf of the measurement error topic group of the STRATOS Initiative, explains the potentially severe consequences of this often overlooked issue, and how statistics can help bring us back – or at least a little closer – to the truth

Videos, Shiny apps

Knowledge translation

- Tutorials from several TGs
 - Measurement error (TG4)
 - Causal inference (TG7)
 - Variable selection (TG2)
- Become active on *Twitter*

Websites from all TGs
 They will provide much more information

Summary

- Data and data science becomes more and more important
- Answering questions empirically through data analyses often requires the use of complex methodology. It is important to develop suitable approaches; needs to be done by experts (Level 3)
- Experienced statisticians (Level 2) need to be supported by suitable guidance. There are (too) many approaches (some are useless) available and suitable comparisons are missing
- Better simulation studies are required to assess properties, compare approaches and derive evidence based guidance for practice.
- Suitable educational material is the key to improve analyses at a broad level
- For practically relevant topics we need greater emphasis on development of Level 1 and 2 guidance