Foundations in Causal Thinking for Health Data Statisticians

Erica E. M. Moodie

McGill University, Biostatistics erica.moodie@mcgill.ca www.ericamoodie.com

On behalf of TG7

everything that becomes or changes must do so owing to some cause; for nothing can come to be without a cause

Plato

- "Epidemiological research is, almost exclusively, concerned with *etiology* of illness", where etiology = causal origin of illness (Miettinen & Karp, 2012).
- In fact, the goal of most statistical analyses is to uncover causal relationships.

Causality

- There is no agreement on the definition of causality, particularly across disciplines (or across centuries!).
- In 1890, Koch proposed criteria to establish a 'causative relationship' between a microbe and a disease; imperfect but reasonable but only for pathogens.
- Pearl (2009, p. 25-26), a computer scientist and a leader in the field of modern causality, does not explicitly define causality at all, refers to causal relationships as "stable" and "ontological".
- Meinshausen, Peters & Buehlmann (2016) similarly deem causal relationships to be present when multiple data sources produce 'invariant prediction'.

Bradford Hill

- Earliest, and best known, ideas in epidemiology on causality are the (non-)criteria given by Sir Austin Bradford-Hill in 1965:
 - $1. \ Strength$
 - 2. Consistency
 - 3. Specificity
 - 4. Temporality
 - 5. Biological gradient
 - 6. Plausibility
 - 7. Coherence
 - 8. Experiment
 - 9. Analogy

• A group of conditions to *assess* (not establish) causality.

- Less well-known is Bradford Hill's wide-ranging lecture on 'The Statistician in Medicine', recently reprinted in *Statistics in Medicine* in celebration of 40 years since its inception.
- Three themes:
 - ▶ knowledge of the area of application,
 - types of data to provide evidence and how it is gathered (including the poor experiment that is 'nature'),
 - drawing conclusions from evidence.
- Still very relevant!

'The Statistician in Medicine': On medicine

[The statistician] must learn a great deal of medicine and [...] not only have facility in speaking two languages, he must be able to think in two.

'The Statistician in Medicine': On medicine

[The statistician] must learn a great deal of medicine and [...] not only have facility in speaking two languages, he must be able to think in two.

- Bilingualism!
- Context is critical implementing any analysis
- Subject-matter knowledge must be used to inform modelling, but equally critical to note what is known vs. what is assumed, and whether the data themselves were collected fairly.
- DAG

'The Statistician in Medicine': On medicine

204

N. Röhrig et al. / Journal of Clinical Epidemiology 67 (2014) 199-206

Fig. 1. DAG derived from literature and expert knowledge. Nodes represent variables and arrows represent causal associations be contex-cored nodes label ECG findings and disability, representing exposure and outcome, respectively. Pale-colored nodes representable confounding factors. Numbers represent available information from the literature (see Table 1 at www.jclinepi.com for full references). SES, socioeconomic status; ECG, electocardingraphy.

• Among BH's items, 'strength of association' is one that is not so easily dismissed.

• Among BH's items, 'strength of association' is one that is not so easily dismissed.

The question, on the other hand, may well be asked, what does one accept as overwhelming? When does a heap really become a heap? The answer, I submit, is not to be found tidily tucked up in the formulae of tests of significance, useful as they may be. In it there must always be an element of the subjective - the subjective judgment of the particular respondent, of you or me.

• Among BH's items, 'strength of association' is one that is not so easily dismissed.

The question, on the other hand, may well be asked, what does one accept as overwhelming? When does a heap really become a heap? The answer, I submit, is not to be found tidily tucked up in the formulae of tests of significance, useful as they may be. In it there must always be an element of the subjective - the subjective judgment of the particular respondent, of you or me.

• ...so correlation may be causation. (Just be careful!)

We are continuously brought back to the fundamental question – what alternative explanation will fit a set of observations, what other differences between our contrasted groups could equally, or better, account for the observed incidences.

• This is where the 'causal' methods come in: we seek methods that reduce or eliminate alternative explanations such as *imbalance* in covariates between treatment groups (confounding, selection, missing data, etc.)

STRATOS Initiative

Topic group 7 is a member of the <u>STRATOS Initiative</u> (STRengthening Analytical Thinking for Observational Studies) which is a large collaboration of experts in many different areas of biostatistical research. Ongoing research, discussions and activities within STRATOS are conducted in nine topic groups and several cross-cutting panels.

Received: 12 May 2019 Revised: 10 May 2020

Accepted: 5 August 2020

DOI: 10.1002/sim.8741

Check fo updates

Statistics

TUTORIAL IN BIOSTATISTICS

Formulating causal questions and principled statistical answers

Els Goetghebeur^{1,2}[©] | Saskia le Cessie³ | Bianca De Stavola⁴ | Erica EM Moodie⁵[©] | Ingeborg Waernbaum⁶ | "on behalf of" the topic group Causal Inference (TG7) of the STRATOS initiative

¹Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium

²Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

³Department of Clinical Epidemiology/Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands Although review papers on causal inference methods are now available, there is a lack of introductory overviews on *what* they can render and on the guiding criteria for choosing one particular method. This tutorial gives an overview in situations where an exposure of interest is set at a chosen baseline ("point exposure") and the target outcome arises at a later time point. We first phrase relevant causal questions and make a case for being specific about the possible exposure levels involved and the populations for which the question is relevant. Using the notential outcomes framework, we describe principled definitions

On this page we locked a first is on utorial: <u>Formulatic qual questions and encided staticizal aways</u>, along with a data set and accompanying costs. The purpose of the data is to flustrate concepts and estimation approaches by initializing a set astudy inspirately by the Promotion of Pastersteding intervention thal (PROBIT) a large randomized study in which mother-intarts pairs across 31 Belansian materity hospitals were assigned either standard care or the possibility to follow as breasteding encouragenet gragmanne (Clamer Med a La 2001). The main sub investigate the reflect of the programme and breasteding intervention a child's later development. In our simulation use po beyond generating the observed data by also simulating for every unit in the study how different exposures would lead to different potential outcomes. The data set is called the simulation learner (PROBITIN).

References

Kramer MS, Chalmers B, Hodnett ED, et al. Promotion of breastfeeding intervention trial (PROBIT) - A randomized trial in

the Republic of Belarus. Journal of the American Medical Association. 2001;285(4):413-420.

On this page we include a link to our tutorial: Formulating causal guestions and principled statistical answers, along with a data set and accompanying code. The purpose of the

- Causal estimation can be accomplished by design, but often requires the additional help of modelling to account for unplanned imbalances.
- The statistical framework for causal inference tries to formalize assumptions and make them as clear and explicit as possible; we mustn't forget that they are present and the foundation for our conclusions.

- Causal estimation can be accomplished by design, but often requires the additional help of modelling to account for unplanned imbalances.
- The statistical framework for causal inference tries to formalize assumptions and make them as clear and explicit as possible; we mustn't forget that they are present and the foundation for our conclusions.
- The stakes in medicine and public policy are high it is worth investing energy and care to ensure our heap of evidence is convincingly high.