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Causal inference for survival outcomes
Topic group 7: Causal Inference

Topic group 7: causal inference

Aims: Overview of the principles that guide current developments in
causal inference

. First guidance paper:

. Short courses

. Website: ofcaus.org
2 / 18



Causal inference for survival outcomes
Overview

Basic Principles

. To find a causal answer, start with a causal question.
Then:

1 specify exposure, outcome, population of interest, target
causal effects (e.g. using potential outcomes)

2 state assumptions for identification and estimation of effects
from the data

3 interpret results cautiously, aided by sensitivity analyses of
assumptions.

. These are indeed the principles guiding RCTs and, for
observational studies, are referred to as “target trial
emulation” (TTE).

. A major advantage of TTE: avoidance of errors in data
manipulation (e.g. immortal time bias, treatment assignment).
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Causal inference for survival outcomes
Overview

Potential Outcomes and Estimands

For a binary exposure A and an outcome Y , let:

. Ya be the potential outcome if we set A to take the value a by
a well-defined (hypothetical) intervention.

. Causal effects (“estimands”) can then be defined e.g. :
- ACE=E (Y1)− E (Y0)
- ATT=E (Y1|A = 1)− E (Y0|A = 1)
- etc.

. These are comparisons of alternative worlds.

. Identification requires linking observed data to these
hypothetical quantities e.g. invoking assumptions of no
interference, consistency, and positivity.

. Choice of estimation methods: each requiring additional
assumptions (e.g. no unmeasured confounding, correct
(semi-)parametric models).
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Causal inference for survival outcomes
Time-to-event outcomes

Time-to-event outcomes

. Well known challenges:

- Time origin and scale: from birth/entry/surgery?
- Censoring: information on whether event is observed at the

end.

. Discussed by TG8-Survival Analysis:
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Causal inference for survival outcomes
Causality and Survival Analysis

Which aspects of time should we focus on when
comparing alternative worlds?
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Causal inference for survival outcomes
Estimands

Estimands

Let Ta be the potential survival time if we set A to take the value a by a
well-defined (hypothetical) intervention.

(A) Risk scale:
Differences in survival probabilities at relevant times

ACE(t) = P(T1 > t)–P(T0 > t), t in[0, τ ]

This is the difference in (marginal) survival functions of POs,

. Interpretation:
risk difference for no event by time t had random patient been
treated versus not.
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Causal inference for survival outcomes
Estimands

Estimands

(B) Hazard scale:

Contrast of hazards, for example λ1(t)
λ0(t)

, where

λa(t) = limh→0
1

h
P(t ≤ Ta < t + h|Ta ≥ t)

. Complication:
Interpretational difficulties because of the built-in selection due to
the conditioning on different subgroups (T0 ≥ t and T1 ≥ t)).

(C) Other scales, e.g. speed from Accelerated Failure Time Models.
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Causal inference for survival outcomes
Estimands

Comments

. The choice between these estimands should be guided by their
clinical relevance.

. In most settings these are contrasts on risk scale.

. Note however that hazard models are useful to derive such contrasts.

. Whichever one is chosen, definitions above have no consideration of
the impact of censoring.

- Do we want to quantify causal effects in the absence in censoring?

TA=a,C=0

- It depends on the source of censoring: for some it does not always
make clinical sense to remove them,

- Administrative reasons

- Loss to follow-up

- Treatment switching

- Competing event
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Causal inference for survival outcomes
Estimands

Assumptions

For identification of causal effects for a time-to-event outcome:

. No interference, consistency and positivity of the exposure

. No unmeasured confounding (NUC), i.e. : sufficient covariate
information regarding treatment assignment confounding

. In the presence of censoring we also require: sufficient covariate
information regarding (possibly time-varying) ‘common causes’ of
censoring and event.
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Causal inference for survival outcomes
The simulation Learner

The simulation learner
Inspiration: the Rotterdam study [Royston & Lambert, 2009; Sjolander, 2016]

. - About 3000 women who had undergone surgery for breast
cancer and, for some, hormonal therapy was offered in 1978 to
1993

- Outcome of interest: overall mortality
- Strong negative confounding of the association between

therapy and mortality
- Informative loss to follow-up driven by age and year of surgery
- Lack of positivity for younger women and earlier patients

.
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339 307 231 141 63 25hormon = yes
2643 2436 2083 1668 1188 660hormon = no

Number at risk
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No hormonal treatment
Hormonal treatment

Kaplan-Meier survival estimates
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Causal inference for survival outcomes
The simulation Learner

The simulation learner

. Excluded women younger than 40 and with surgery before 1982

. Retained all the original confounders data

X

Z

A Yk Ck+1 Yk+1

For a subset of the follow-up:

X : baseline confounders; Z : baseline predictors of censoring and death; A: treatment; Ck : censoring indicator at

time tk ; Yk : outcome at time tk .
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Causal inference for survival outcomes
The simulation Learner

The simulation learner
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Causal inference for survival outcomes
The simulation Learner

Estimation of ACE(t)

1. Model-based marginal counterfactual survival curves:

- (Sufficiently) flexible hazard models
- Derive individual-level predicted potential survival curves
- Standardisation to the distribution of the observed confounders
- Compute difference at selected values of t
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Causal inference for survival outcomes
The simulation Learner

Estimation of ACE(t)

2. Weighted Kaplan-Meier curves:

- Fit propensity score model for A and save predicted scores
- Fit pooled logistic regression model for C and save predicted

(time-varying) probabilities
- Combine the weights
- Estimate K-M curves using the inverse of these combined

values as weights
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Causal inference for survival outcomes
Result

Results
Model-based marginal counterfactual survival curves
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Causal inference for survival outcomes
Result

Results
All methods together
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Causal inference for survival outcomes
Summary

Summary

. Counterfactual-based causal inference has shifted the focus from
model-based parameters to estimands defined irrespectively of any
model: we should choose meaningful, clinically relevant quantities

. This should free us from necessarily wanting to express causal
effects on the hazard scale:

- challenges to be interpreted causally
- useful for deriving the causal estimates of interest.

. Dealing with censoring calls upon a careful choice of potential
outcomes.
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