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Aim

To increase: 

(i) awareness of measurement error 

issues in observational epidemiology 

and

(ii) use of statistical methods to adjust for 

such error
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Impact of Measurement Error 

on Study Results  

Depends on:

 The amount of error

 The nature of the error –

measurement error model

 What is being estimated  



Content of this talk  

Focus on the Berkson error model:

 Its definition

 Examples of when it occurs

 Impact on various estimates

 How to adjust for Berkson error

 Examples in epidemiology

To put all this in context, I will contrast it with the 

classical measurement error model



Classical Measurement Error 

Definition

𝑋∗ = 𝑋 + 𝑒

X*  is the measurement that has error

X   is the true (unknown) value

e  is the (additive) error in measurement X*

e  has mean zero (X* is unbiased)

e  is independent of X 



Classical Measurement Error 

Examples

 Average short term blood pressure

 Average short term serum cholesterol

In each of the above, error is due to: 

 laboratory error

 biological variation and 

 fluctuations over time



Berkson Measurement Error 

Definition

𝑋 = 𝑋∗ + 𝑒

X*  is the measurement that has error

X   is the true (unknown) value

e  is the (additive) error in measurement X*

e  has mean zero

e  is independent of X*



Berkson Measurement Error 

Some history

Joseph Berkson (1899-1982)
 Physicist, Physician and Biostatistician 

 Headed the Biometry Unit at the Mayo Clinic from 

1934-64

 Discussed “Berkson” measurement error in a 1950 

paper in “Are there two regressions?”

J Am Stat Assoc 1950; 45:164–180. 

doi:10.2307/2280676. JSTOR 2280676



Berkson Measurement Error 

Examples

 Berkson’s example: 

Volume of preparation pipetted into a test tube in a 

laboratory experiment

 Exposure level in occupational medicine studies: 

groups of individuals classified according to 

average exposure

 Values obtained from a prediction equation: 

e.g. Schofield’s equation for resting energy 

expenditure based on age, sex and weight



Berkson Measurement Error 

Prediction Equations

Each age group prediction equation is a regression of the form:

REE = b0 + b1 x Wt + e, with e independent of predicted value



Impact on estimates

Types of Estimate:

 Percentiles of X: observe X*

 Coefficient of X in regression of Y on X

Y is measured exactly, but observe X*, not X

 Coefficient of X in regression of Y on X

X is measured exactly, but observe Y*, not Y 



Impact on Estimates

The impacts of classical and Berkson errors 

on these estimates are opposite!



Percentiles of X
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Percentiles of X

Estimate Classical Berkson

Upper 

percentile

Overestimate Underestimate

Lower 

percentile

Underestimate Overestimate



Method of Adjustment for Berkson Error

Berkson error:  X = 𝑋∗ + 𝑒

• The unadjusted estimate forms a distribution of 

the 𝑋∗ values

• Instead, use moment reconstruction (MR):

• Form a new variable 𝑋MR

𝑋MR = (1-w)𝑋∗ + w𝑋∗ , where

w = SD(X )/SD(X* ): note that w >1
E(𝑋MR ) = E(X ) ;  var(𝑋MR ) = var(X )

• w is estimated from external information

• Form the distribution using the 𝑋MR values



Example from the OPEN dietary reporting 

validation study

Potassium intake (K)

KFFQ = Food Frequency Questionnaire report of K

The study also included a urinary determination of K

Calibration (prediction) equation: 

ln(K) = 5.895 + 0.271*ln(KFFQ) – 0.193*sex +                                  

0.00035*age  

This equation for ln(K) has Berkson error

Var(predicted ln(K)) = 0.0239

Var(prediction residual) = 0.0682

MR method: w = √{(0.0239+0.0682)/0.0239} =1.96



Results

Black = Empirical distribution of predicted potassium intake 
Green = Adjusted for Berkson error
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Impact on estimates

Types of Estimate:

 Percentiles of X: observe X*

 Coefficient of X in regression of Y on X

Y is measured exactly, but observe X*, not X

 Coefficient of X in regression of Y on X

X is measured exactly, but observe Y*, not Y



An extra assumption

 The errors are non-differential

 For the case where X is measured with 

error, this means:

X* and Y are independent conditional on X

 For the case where Y is measured with 

error, this means: 

Y* and X are independent conditional on Y



Impact on Estimates

The impacts of classical and Berkson errors 

on these estimates are opposite!



Impact on Estimates of Regression Coefficients

Classical Error in X
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Regression coefficient of X in 

regression of Y on X

Variable 

measured 

with error 

Estimate Classical Berkson

X Regression 

coefficient

Attenuated Unbiased

Y Regression 

coefficient 

Unbiased Attenuated



How to adjust for classical error in X?

Regression calibration:

Obtain a “calibration” equation: E(X|X*)

 Substitute E(X|X*) for X in regression of Y 

on X

Why does it work?

E(X|X*) has Berkson error as an estimate of 

X.

Berkson error in a covariate does not cause 

bias in estimation.



How to adjust for Berkson error in Y?

“Inverse regression calibration”:

 Invert the Berkson measurement error 

model Y=Y*+U to: 

Y* = a0 + a1Y + U* 

 Form Yest = (Y*- a0)/a1 (Buonaccorsi, 1991)

 Substitute Yest for Y in regression of Y on X

Why does it work?

Yest has classical error as an estimate of Y.

Classical error in Y does not cause bias.



Example from OPEN: does potassium 

density intake vary with educational level?

Potassium density (mg/kcal)

Calibration (prediction) equation: 

ln(Kden) = -0.385 + 0.480*ln(KdenFFQ) – 0.029*sex +                                  

0.00602*age  

This equation for ln(Kden) has Berkson error

Var(predicted ln(Kden)) = 0.0203

Var(prediction residual) = 0.0696

Inverse regression calibration:

Value of Yest to be entered into model of Y on X:

( ln(Kden) – 0.124 ) / 0.226 



Example from OPEN: does potassium 

density intake vary with educational level?

1. Run regression of ln(Kden) on education, sex and 

age.

2. Estimate median levels of Kden (mg/1000 kcal) 

for women, aged 50y, according to educational 

level 

Education
al level

Using 
Y = predicted 

ln(Kden) 

Inv. reg. 
calib.

Unbiased 
estimate

High school 1093 856 996

College 1113 933 1095

Post-grad 1159 1110 1216



Summary

• With the increasing use of prediction and 

calibration equations in medicine, Berkson

error will be encountered more and more

• The commonly assumed adage that 

Berkson error does not cause bias in 

estimates is wrong. 

• Awareness of the effects of Berkson error 

and methods to adjust for it need more 

attention
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